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• EEG
• 1 – 300 μV
• 106 neurons
• Synchronized 

synaptic activity
• < 50 Hz

• ECoG
• 1 – 5000 μV
• 102 – 104 

neurons
• < 250 Hz

• LFP
• 1 – 1000 μV
• 102 synapses
• < 250 Hz

• Spikes
• 200 – 500 μV
• 1-4 neurons
• 0.1 – 7 kHz
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For each of the examples shown in Fig. 1, there are ways to
detect (or indirectly view) trial-to-trial differences in the neural
responses, including computing streak indices (Horwitz and
Newsome 2001), estimating Þring rates from a single spike
train (Cook and Maunsell 2002; Roitman and Shadlen 2002),
and measuring the across-trial variability of neural responses
(Churchland et al. 2006). In all of these cases, however, what
one really wants is a direct view of the time evolution of the
neural response on single trials. In this report, we present
analytical methods that can extract such single-trial time
courses from neural population activity.

Existing methods for extracting neural trajectories

Figure 2 shows conceptually how a neural trajectory relates
to a set of simultaneously recorded spike trains. Suppose that
we are simultaneously recording from three neurons, whose
spike trains are shown in Fig. 2A. Although the following ideas
hold for larger numbers of neurons, we use only three neurons
here for illustrative purposes. We deÞne a high-dimensional
space, where each axis measures the instantaneous Þring rate
of a neuron being monitored (Fig. 2B). At any given time, the
activity of the neural population is characterized by a single
point in this space. As the activity of the neural population
evolves over time, a noisy trajectory is traced out. The goal is
to extract a corresponding smooth neural trajectory that em-
bodies only the shared ßuctuations (termedshared variability)
in Þring rate across the neural population (Fig. 2C). Discarded
in this process are ßuctuations particular to individual neurons
(termed independent variability), which presumably reßect
noise processes involved in spike generation that are internal to
the neuron.2 Due to the correlated activity across the neural
population, the neural trajectory may not explore the entire
high-dimensional space; in other words, the neural system may
be using fewer degrees of freedom than the number of neurons
at play. If this is true, then we would seek to identify a
lower-dimensional space (shown as a two-dimensional plane
denoted by grid lines in Fig. 2C) within which the neural
trajectory lies. The neural trajectory can then be directly
visualized in the low-dimensional space and be referred to
equivalently using its high-dimensional (N1, N2, N3) or low-
dimensional (S1, S2) coordinates (Fig. 2D).

A simple way to extract neural trajectories is to Þrst estimate
a smooth Þring-rate proÞle for each neuron on a single trial
(e.g., by convolving each spike train with a Gaussian kernel),
then apply a static dimensionality-reduction technique (e.g.,
principal components analysis [PCA]) (Levi et al. 2005;
Nicolelis et al. 1995). The signal ßow diagram for these
so-called two-stage methodsis shown in Fig. 3A. Smooth
Þring-rate proÞles may also be obtained by averaging across a
small number of trials (if the neural time courses are believed
to be similar on different trials) (Broome et al. 2006; Brown
et al. 2005; Mazor and Laurent 2005; Stopfer et al. 2003) or by
applying more advanced statistical methods for estimating
Þring-rate proÞles from single spike trains (Cunningham et al.
2008b; DiMatteo et al. 2001; Ventura et al. 2005). Numerous
linear and nonlinear dimensionality-reduction techniques exist,

2 Although the independent variability indeed feeds back into the network
and can affect the aggregate network state, we assume that such effects are
small.
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FIG. 2. Extracting a neural trajectory from multiple spike trains. For clarity, the activity of only 3 neurons is considered in this illustration.A: spike trains
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instantaneous Þring rate of a neuron (e.g.,N1 refers to neuron 1).C: the neural trajectory (a ÒdenoisedÓ version of the trajectory inB) is shown to lie within a
2-dimensional space with coordinatesS1 andS2. D: the neural trajectory can be directly visualized in the low-dimensional space and be referred to using its
low-dimensional coordinates (S1, S2).
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ations are performed sequentially with the two-stage methods (dotted box),
they are performed simultaneously using GPFA. For the two-stage methods,
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premotor and motor cortices. We propose that neural manifolds
spanned by a surprisingly small number of neural modes are
likely to simplify the neural control of movement and speculate
on the potential learning mechanisms underlying the emergence
of this low-dimensional organization.

From Single Neurons to Neural Manifolds
Current multi-electrode arrays (MEAs) allow for the simultaneous
recording of about a hundred neurons. This is much more than
the small numbers recorded with single electrodes but still a
tiny fraction of the total number of neurons involved in movement
generation. Despite this limitation, brain-machine interfaces
(BMIs) based on these MEAs are able to predict reasonably
well many behavioral variables (Carmena et al., 2003; Ethier
et al., 2012; Serruya et al., 2002).

What is the underlying reason for this success? Intuitively, it
is the high degree of correlation and redundancy across indivi-
dual neural activity. This intuition has been recently made precise
in elegant arguments on the low dimensionality of the stereo-
typical motor behaviors used in most motor control studies
(Gao and Ganguli, 2015). The relatively small number of inde-
pendent signals needed to control behavior during the execu-
tion of such tasks only requires a small number of independent

neural signals. These neural signals are the ÔÔlatent variablesÕÕ
(Cunningham and Yu, 2014) that describe the dynamics of the
ÔÔneural modes.ÕÕ

The participation of individual neurons in neural modes is illus-
trated in Figure 1A. Note that each neural mode includes a large
fraction of the neurons in the population and that a given neuron
can participate in several neural modes. In this view, the time-
dependent activity of individual neurons is simply a reßection of
the latent variables (Figure 1B) (Kaufman et al., 2016; Kobak
et al., 2016; Macke et al., 2011). Consider the ÔÔneural spaceÕÕ
in Figure 1C; each axis represents the activity of one of the
N recorded neurons (here, N = 3). Assuming that network connec-
tivity constrains the possible patterns of population activity ( Okun
et al., 2015; Sadtler et al., 2014; Tsodyks et al., 1999), the popu-
lation dynamics will not explore the full high-dimensional neural
space but will instead remain conÞned to a low-dimensional sur-
face within the full space, the ÔÔneural manifold.ÕÕ In the simplest
linear case, the neural manifold is ßat, as is the hyperplane in
Figure 1C, spanned by the two neural modes, u1 and u2.

This geometrical picture illustrates a possible generative
model for the dynamics of individual neurons: the activity ni! t"
of the ith neuron, 1%i%N, results from a linear combination of
latent variables Lj! t" plus additive noise ! i:

ni! t" =
X

j
uij Lj! t" + ! i: Equation 1

Here, Lj! t" is the jth latent variable, the time-dependent activa-
tion of the jth neural mode. Each latent variable results from pro-
jecting the neural population activity onto the corresponding
neural mode. The coefÞcient uij in the linear combination quan-
tiÞes the contribution of the jth latent variable to the activity of
the ith neuron. These ÔÔparticipation weightsÕÕ relate to the inter-
nal connectivity of the network ( Okun et al., 2015). The noise term
! i represents intrinsic neural noise, and potentially other pro-
cesses not accounted for in the model. By construction, neural
population activity remains within the neural manifold except
for small ßuctuations (see how close the actual black trajectory
is to the gray trajectory projected into the manifold in Figure 1C).

Dimensionality reduction techniques allow us to study neural
population dynamics by Þnding a set of neural modes that
span the neural manifold and identify relevant population fea-
tures (Cunningham and Yu, 2014). Common linear techniques
for dimensionality reduction, such as principal component anal-
ysis (PCA) and factor analysis (FA), identify neural modes as
dominant patterns of covariation across neurons and yield the
parameters of the generative model (Equation 1; Figure 1B).

As an illustration, we show that neural data recorded during an
isometric wrist task (Figures 2A and 2B) is largely accounted for
by the latent variables in Figure 2C. The low dimensionality of the
neural manifold follows from the rapid increase of the explained
variance with the number of neural modes (Figure 2D).

Neural Manifolds: A Framework to Study Neural Control
of Movement
The concept of the neural manifold and its associated latent
variables has been used in a series of recent studies that aban-
don the search for movement representation by single neurons
to consider instead movement planning and execution based

Figure 1. The Neural Manifold Hypothesis
(A) Latent variables as a generative model for population activity. The relative
area of the blue/green regions in each neuron represents the relative magni-
tude of the contribution of each latent variable to the neuronÕs activity.
(B) Spikes from three recorded neurons during task execution as a linear
combination of two latent variables.
(C) Trajectory of time-varying population activity in the neural space of the
three recorded neurons (black). The trajectory is mostly conÞned to the neural
manifold, a plane shown in gray and spanned by the neural modes u1 and u2.
(D) A curved, nonlinear neural manifold, shown in blue. Linear methods would
capture a ßat, local approximation to a small task-speciÞc region of the
manifold.
(E) Linear manifolds for two different tasks shown as gray and purple planes.
Are these two planes local linear approximations to different regions within a
large, continuous manifold (transparent surface with blue contour), or are they
distinct task-speciÞc manifolds that may or not share neural modes?
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